Multiple angles
Understanding Multiple Angles in Trigonometry
Trigonometry is a branch of mathematics that deals with the relationships between the sides and angles of triangles. The concept of multiple angles is a fundamental aspect of trigonometry, where we explore the trigonometric functions of angles that are multiples of a given angle.
Multiple Angle Formulas
Multiple angle formulas allow us to express the trigonometric functions of multiple angles in terms of single angles. These are particularly useful in simplifying complex trigonometric expressions and solving trigonometric equations.
Double Angle Formulas
The double angle formulas are used to express the trigonometric functions of (2\theta) in terms of (\theta).
[ \begin{align*} \sin(2\theta) &= 2\sin(\theta)\cos(\theta) \ \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta) \ &= 2\cos^2(\theta) - 1 \ &= 1 - 2\sin^2(\theta) \ \tan(2\theta) &= \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \end{align*} ]
Triple Angle Formulas
The triple angle formulas are used to express the trigonometric functions of (3\theta) in terms of (\theta).
[ \begin{align*} \sin(3\theta) &= 3\sin(\theta) - 4\sin^3(\theta) \ \cos(3\theta) &= 4\cos^3(\theta) - 3\cos(\theta) \ \tan(3\theta) &= \frac{3\tan(\theta) - \tan^3(\theta)}{1 - 3\tan^2(\theta)} \end{align*} ]
Half Angle Formulas
The half angle formulas are used to express the trigonometric functions of (\frac{\theta}{2}) in terms of (\theta).
[ \begin{align*} \sin\left(\frac{\theta}{2}\right) &= \pm\sqrt{\frac{1 - \cos(\theta)}{2}} \ \cos\left(\frac{\theta}{2}\right) &= \pm\sqrt{\frac{1 + \cos(\theta)}{2}} \ \tan\left(\frac{\theta}{2}\right) &= \pm\sqrt{\frac{1 - \cos(\theta)}{1 + \cos(\theta)}} \ &= \frac{\sin(\theta)}{1 + \cos(\theta)} \ &= \frac{1 - \cos(\theta)}{\sin(\theta)} \end{align*} ]
The sign depends on the quadrant in which the angle (\frac{\theta}{2}) lies.
Differences and Important Points
Here's a table summarizing the differences and important points of multiple angle formulas:
Formula Type | Expression | Use Case | Example |
---|---|---|---|
Double Angle | (\sin(2\theta)), (\cos(2\theta)), (\tan(2\theta)) | Simplifying expressions, solving equations | (\sin(2\theta) = 2\sin(\theta)\cos(\theta)) |
Triple Angle | (\sin(3\theta)), (\cos(3\theta)), (\tan(3\theta)) | Analyzing trigonometric properties for larger angles | (\cos(3\theta) = 4\cos^3(\theta) - 3\cos(\theta)) |
Half Angle | (\sin\left(\frac{\theta}{2}\right)), (\cos\left(\frac{\theta}{2}\right)), (\tan\left(\frac{\theta}{2}\right)) | Calculating trigonometric functions for half angles | (\cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1 + \cos(\theta)}{2}}) |
Examples
Example 1: Double Angle
Calculate (\sin(2\theta)) when (\sin(\theta) = \frac{1}{2}) and (\theta) is in the first quadrant.
Using the double angle formula for sine:
[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) ]
Since (\theta) is in the first quadrant, (\cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - \left(\frac{1}{2}\right)^2} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}).
Therefore,
[ \sin(2\theta) = 2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} ]
Example 2: Half Angle
Find (\cos\left(\frac{\theta}{2}\right)) when (\cos(\theta) = \frac{3}{5}) and (\frac{\theta}{2}) is in the first quadrant.
Using the half angle formula for cosine:
[ \cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1 + \cos(\theta)}{2}} ]
Since (\frac{\theta}{2}) is in the first quadrant, we take the positive square root:
[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \frac{3}{5}}{2}} = \sqrt{\frac{8}{10}} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}} ]
By understanding and applying these multiple angle formulas, one can solve a wide range of trigonometric problems and simplify complex expressions. It's crucial to remember the quadrant considerations when determining the sign of the result, especially for half angle formulas.