Identities
Understanding Trigonometric Identities
Trigonometric identities are equations involving trigonometric functions that are true for all values of the variables where the functions are defined. These identities are useful in simplifying expressions and solving trigonometric equations. They are essential tools in various areas of mathematics, including geometry, calculus, and complex number theory.
Fundamental Trigonometric Identities
There are several fundamental trigonometric identities that are the basis for more complex identities. Here are the most important ones:
Pythagorean Identities
These identities are derived from the Pythagorean theorem and relate the squares of the sine and cosine functions.
- $\sin^2\theta + \cos^2\theta = 1$
- $1 + \tan^2\theta = \sec^2\theta$
- $1 + \cot^2\theta = \csc^2\theta$
Reciprocal Identities
These identities show the relationship between the basic trigonometric functions and their reciprocals.
- $\sin\theta = \frac{1}{\csc\theta}$
- $\cos\theta = \frac{1}{\sec\theta}$
- $\tan\theta = \frac{1}{\cot\theta}$
- $\csc\theta = \frac{1}{\sin\theta}$
- $\sec\theta = \frac{1}{\cos\theta}$
- $\cot\theta = \frac{1}{\tan\theta}$
Quotient Identities
These identities express tangent and cotangent in terms of sine and cosine.
- $\tan\theta = \frac{\sin\theta}{\cos\theta}$
- $\cot\theta = \frac{\cos\theta}{\sin\theta}$
Co-Function Identities
These identities relate the trigonometric functions of complementary angles.
- $\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$
- $\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$
- $\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$
- $\cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$
- $\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$
- $\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta$
Even-Odd Identities
Trigonometric functions have properties that determine whether they are even or odd functions.
- $\sin(-\theta) = -\sin\theta$ (odd function)
- $\cos(-\theta) = \cos\theta$ (even function)
- $\tan(-\theta) = -\tan\theta$ (odd function)
- $\cot(-\theta) = -\cot\theta$ (odd function)
- $\sec(-\theta) = \sec\theta$ (even function)
- $\csc(-\theta) = -\csc\theta$ (odd function)
Sum and Difference Identities
These identities express the sine, cosine, and tangent of the sum or difference of two angles.
- $\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta$
- $\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$
- $\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha \tan\beta}$
Double Angle Identities
These identities are used to express functions of double angles in terms of single angles.
- $\sin(2\theta) = 2\sin\theta\cos\theta$
- $\cos(2\theta) = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$
- $\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$
Half-Angle Identities
These identities are used to express functions of half angles in terms of the square root of expressions involving the original angle.
- $\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1 - \cos\theta}{2}}$
- $\cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1 + \cos\theta}{2}}$
- $\tan\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}} = \frac{\sin\theta}{1 + \cos\theta} = \frac{1 - \cos\theta}{\sin\theta}$
Product-to-Sum and Sum-to-Product Identities
These identities are used to convert products of trigonometric functions into sums or differences and vice versa.
- $\sin\alpha \cos\beta = \frac{1}{2}[\sin(\alpha + \beta) + \sin(\alpha - \beta)]$
- $\cos\alpha \sin\beta = \frac{1}{2}[\sin(\alpha + \beta) - \sin(\alpha - \beta)]$
- $\cos\alpha \cos\beta = \frac{1}{2}[\cos(\alpha + \beta) + \cos(\alpha - \beta)]$
- $\sin\alpha \sin\beta = \frac{1}{2}[\cos(\alpha - \beta) - \cos(\alpha + \beta)]$
Examples
To illustrate the use of these identities, let's look at a couple of examples:
Example 1: Simplifying an Expression
Simplify the expression $\sin^2\theta \cdot \tan^2\theta$.
Using the Pythagorean identity $\tan^2\theta = \sec^2\theta - 1$ and the reciprocal identity $\sec\theta = \frac{1}{\cos\theta}$, we get:
$$ \sin^2\theta \cdot \tan^2\theta = \sin^2\theta \cdot (\sec^2\theta - 1) = \sin^2\theta \cdot \left(\frac{1}{\cos^2\theta} - 1\right) = \frac{\sin^2\theta}{\cos^2\theta} - \sin^2\theta = \tan^2\theta - \sin^2\theta $$
Example 2: Finding the Exact Value
Find the exact value of $\cos\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$.
Using the sum and difference identity for cosine:
$$ \cos\left(\frac{\pi}{4} - \frac{\pi}{6}\right) = \cos\frac{\pi}{4}\cos\frac{\pi}{6} + \sin\frac{\pi}{4}\sin\frac{\pi}{6} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4} $$
Table of Differences and Important Points
Identity Type | Example | Important Point |
---|---|---|
Pythagorean | $\sin^2\theta + \cos^2\theta = 1$ | Relates squares of sine and cosine |
Reciprocal | $\sin\theta = \frac{1}{\csc\theta}$ | Expresses functions in terms of their reciprocals |
Quotient | $\tan\theta = \frac{\sin\theta}{\cos\theta}$ | Defines tangent and cotangent in terms of sine and cosine |
Co-Function | $\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$ | Relates functions of complementary angles |
Even-Odd | $\sin(-\theta) = -\sin\theta$ | Determines symmetry of functions |
Sum and Difference | $\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta$ | Expresses functions of angle sums/differences |
Double Angle | $\sin(2\theta) = 2\sin\theta\cos\theta$ | Simplifies expressions involving double angles |
Half-Angle | $\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1 - \cos\theta}{2}}$ | Useful for integration and solving equations |
Product-to-Sum | $\sin\alpha \cos\beta = \frac{1}{2}[\sin(\alpha + \beta) + \sin(\alpha - \beta)]$ | Converts products to sums/differences |
Understanding and applying these identities is crucial for solving trigonometric problems and simplifying complex expressions. Practice using these identities in various contexts to become proficient in their application.