Other Reactions of Alkynes


Other Reactions of Alkynes

Alkynes are hydrocarbons that contain at least one carbon-carbon triple bond. They are unsaturated compounds with the general formula $C_nH_{2n-2}$. Alkynes are known for their reactivity due to the presence of the high-energy triple bond. In this discussion, we will explore various reactions that alkynes undergo, beyond the typical addition reactions.

Hydrogenation

Alkynes can be hydrogenated to form alkenes and ultimately alkanes. The process involves the addition of hydrogen (H₂) across the triple bond. This reaction requires a metal catalyst such as palladium, platinum, or nickel.

Partial Hydrogenation

$$ \text{RC} \equiv \text{CR'} + \text{H}_2 \xrightarrow{\text{Pd/CaCO}_3} \text{RC} = \text{CR'} $$

Complete Hydrogenation

$$ \text{RC} \equiv \text{CR'} + 2\text{H}_2 \xrightarrow{\text{Pt}} \text{RCH}_2\text{-CH}_2\text{R'} $$

Halogenation

Alkynes react with halogens (X₂) to form dihalides and tetrahalides. The reaction proceeds through the addition of halogen across the triple bond.

Addition of One Equivalent of Halogen

$$ \text{RC} \equiv \text{CR'} + \text{X}_2 \rightarrow \text{RCX} = \text{CXR'} $$

Addition of Two Equivalents of Halogen

$$ \text{RC} \equiv \text{CR'} + 2\text{X}_2 \rightarrow \text{RCX}_2\text{-CX}_2\text{R'} $$

Hydrohalogenation

The addition of hydrogen halides (HX) to alkynes results in vinyl halides or geminal dihalides, depending on the amount of HX added.

Addition of One Equivalent of HX

$$ \text{RC} \equiv \text{CR'} + \text{HX} \rightarrow \text{RC} = \text{CHR'}\text{X} $$

Addition of Two Equivalents of HX

$$ \text{RC} \equiv \text{CR'} + 2\text{HX} \rightarrow \text{RCHX}_2\text{-CHR'}\text{X} $$

Hydration

Alkynes can be hydrated to form enols, which tautomerize to ketones or aldehydes. The reaction typically requires an acid catalyst and mercury(II) sulfate.

$$ \text{RC} \equiv \text{CR'} + \text{H}_2\text{O} \xrightarrow{\text{H}_2\text{SO}_4, \text{HgSO}_4} \text{RC(OH)} = \text{CHR'} \xrightarrow{\text{tautomerization}} \text{RCOR'} $$

Ozonolysis

Ozonolysis of alkynes leads to the cleavage of the triple bond and formation of carboxylic acids or their derivatives.

$$ \text{RC} \equiv \text{CR'} + \text{O}_3 \xrightarrow{\text{workup}} \text{RCOOH} + \text{R'COOH} $$

Alkylation of Terminal Alkynes

Terminal alkynes can undergo alkylation via the reaction with a strong base to form an acetylide anion, which can then be alkylated with an alkyl halide.

$$ \text{RC} \equiv \text{CH} + \text{NaNH}_2 \rightarrow \text{RC} \equiv \text{C}^- \text{Na}^+ + \text{NH}_3 $$ $$ \text{RC} \equiv \text{C}^- \text{Na}^+ + \text{R'X} \rightarrow \text{RC} \equiv \text{CR'} + \text{NaX} $$

Cycloaddition Reactions

Alkynes can participate in [2+2] and [4+2] cycloaddition reactions, such as the Diels-Alder reaction, to form cyclic compounds.

Diels-Alder Reaction

$$ \text{RC} \equiv \text{CR'} + \text{dienophile} \xrightarrow{\text{heat}} \text{cyclic adduct} $$

Comparison Table

Reaction Type Reactant Catalyst/Reagent Product Notes
Hydrogenation H₂ Pd, Pt, Ni Alkane/Alkene Can be partial or complete
Halogenation X₂ None Dihalide/Tetrahalide X = Cl, Br, I
Hydrohalogenation HX None Vinyl halide/Geminal dihalide X = Cl, Br, I
Hydration H₂O H₂SO₄, HgSO₄ Ketone/Aldehyde Enol intermediate
Ozonolysis O₃ Workup (e.g., Zn) Carboxylic acids Cleavage of triple bond
Alkylation NaNH₂, R'X None Alkylated alkyne Terminal alkynes only
Cycloaddition Dienophile Heat Cyclic compound Diels-Alder reaction

Examples

Hydrogenation Example

The partial hydrogenation of 1-butyne using a Lindlar catalyst yields cis-2-butene:

$$ \text{CH}_3\text{C} \equiv \text{CCH}_2\text{CH}_3 + \text{H}_2 \xrightarrow{\text{Lindlar catalyst}} \text{CH}_3\text{CH} = \text{CHCH}_2\text{CH}_3 $$

Halogenation Example

The addition of bromine to 2-butyne forms 2,2-dibromo-2-butene:

$$ \text{CH}_3\text{C} \equiv \text{CCH}_3 + \text{Br}_2 \rightarrow \text{CH}_3\text{CBr} = \text{CBrCH}_3 $$

Hydration Example

Hydration of 1-hexyne yields 2-hexanone after tautomerization:

$$ \text{CH}_3\text{C} \equiv \text{CCH}_2\text{CH}_2\text{CH}_2\text{CH}_3 + \text{H}_2\text{O} \xrightarrow{\text{H}_2\text{SO}_4, \text{HgSO}_4} \text{CH}_3\text{COCH}_2\text{CH}_2\text{CH}_2\text{CH}_3 $$

Ozonolysis Example

Ozonolysis of 3-hexyne leads to the formation of two molecules of acetic acid:

$$ \text{CH}_3\text{C} \equiv \text{CCH}_2\text{CH}_2\text{CH}_3 + \text{O}_3 \xrightarrow{\text{workup}} 2 \text{CH}_3\text{COOH} $$

Understanding these reactions is crucial for students preparing for exams, as they provide a comprehensive view of the chemistry of alkynes and their versatility in organic synthesis.