Draw the circuit of a Summing Amplifier and obtain an expression for the output.
Q.) Draw the circuit of a Summing Amplifier and obtain an expression for the output.
Subject: electronic devices and circuitsSumming Amplifier Circuit
A summing amplifier is a type of operational amplifier (op-amp) circuit that can combine several input signals into a single output signal. It is essentially a weighted sum of the input signals. The circuit for a summing amplifier using an op-amp is shown below:
V1 R1
├─────┬───┐
│ │ │
┌┴┐ ┌┴┐ │
│ │ │ │ │
│ │ │ │ │
└┬┘ └┬┘ │
│ │ │
├─────┼───┼───┐
│ │ │ │
V2 R2 │ │
├─────┬───┘ │
│ │ │
┌┴┐ ┌┴┐ │
│ │ │ │ │
│ │ │ │ │
└┬┘ └┬┘ │
│ │ │
├─────┼───────┼───┐
│ │ │ │
V3 R3 │ │
├─────┬───────┘ │
│ │ │
┌┴┐ ┌┴┐ │
│ │ │ │ │
│ │ │ │ │
└┬┘ └┬┘ │
│ │ │
├─────┼───────────┼───┐
│ │ │ │
│ Rf │ │
│ │ │ │
│ ├───────────┤ │
│ │ │ │
└─────┤ ├───┘
│ │
├───────────┤
│ │
└───────────┘
In this circuit, V1
, V2
, and V3
are the input voltages, R1
, R2
, and R3
are the input resistors, and Rf
is the feedback resistor. The op-amp is represented by the triangle, and it is assumed to be ideal, meaning it has infinite input impedance, zero output impedance, and infinite gain.
Expression for the Output
To obtain an expression for the output voltage Vout
, we will use the properties of an ideal op-amp and the concept of virtual ground.
Virtual Ground: Since the op-amp is in a negative feedback configuration, the voltage at the inverting input (−) is virtually the same as the non-inverting input (+), which is grounded. Therefore, the voltage at the inverting input is 0V.
Current through the Feedback Resistor (
If
): The current through the feedback resistorRf
is the same as the sum of the currents throughR1
,R2
, andR3
because of Kirchhoff's current law (KCL). This can be expressed as:
[ If = I1 + I2 + I3 ]
where I1
, I2
, and I3
are the currents through resistors R1
, R2
, and R3
, respectively.
- Currents through the Input Resistors (
I1
,I2
,I3
): Using Ohm's law, the currents through the input resistors are given by:
[ I1 = \frac{V1}{R1} ] [ I2 = \frac{V2}{R2} ] [ I3 = \frac{V3}{R3} ]
- Current through the Feedback Resistor (
If
) using Ohm's Law: The current through the feedback resistor is also given by Ohm's law:
[ If = \frac{Vout - 0}{Rf} = \frac{Vout}{Rf} ]
- Combining the Equations: By substituting the expressions for
I1
,I2
,I3
, andIf
, we get:
[ \frac{Vout}{Rf} = \frac{V1}{R1} + \frac{V2}{R2} + \frac{V3}{R3} ]
- Solving for
Vout
: Multiplying through byRf
gives us the output voltageVout
:
[ Vout = -\left( \frac{Rf}{R1}V1 + \frac{Rf}{R2}V2 + \frac{Rf}{R3}V3 \right) ]
The negative sign indicates that the output is inverted with respect to the input signals.
Summary Table
Parameter | Description | Formula |
---|---|---|
V1 , V2 , V3 |
Input Voltages | - |
R1 , R2 , R3 |
Input Resistors | - |
Rf |
Feedback Resistor | - |
If |
Current through Rf |
If = I1 + I2 + I3 |
I1 , I2 , I3 |
Currents through R1 , R2 , R3 |
I1 = V1/R1 , I2 = V2/R2 , I3 = V3/R3 |
Vout |
Output Voltage | Vout = -(Rf/R1)V1 - (Rf/R2)V2 - (Rf/R3)V3 |
Example
Let's say we have a summing amplifier with the following values:
V1 = 1V
,R1 = 10kΩ
V2 = 2V
,R2 = 10kΩ
V3 = 3V
,R3 = 10kΩ
Rf = 10kΩ
Using the formula for Vout
, we get:
[ Vout = -\left( \frac{10kΩ}{10kΩ} \cdot 1V + \frac{10kΩ}{10kΩ} \cdot 2V + \frac{10kΩ}{10kΩ} \cdot 3V \right) ] [ Vout = -(1 + 2 + 3)V ] [ Vout = -6V ]
The output voltage Vout
is -6V, which is the inverted sum of the input voltages.